Short Signatures from Homomorphic Trapdoor Functions
نویسنده
چکیده
We present a lattice-based stateless signature scheme provably secure in the standard model. Our scheme has a constant number of matrices in the public key and a single lattice vector (plus a tag) in the signatures. The best previous lattice-based encryption schemes were the scheme of Ducas and Micciancio (CRYPTO 2014), which required a logarithmic number of matrices in the public key and that of Bohl et. al (J. of Cryptology 2014), which required a logarithmic number of lattice vectors in the signature. Our main technique involves using fully homomorphic computation to compute a degree d polynomial over the tags hidden in the matrices in the public key. In the scheme of Ducas and Micciancio, only functions linear over the tags in the public key matrices were used, which necessitated having d matrices in the public key. As a matter of independent interest, we extend Wichs’ (eprint 2014) recent construction of homomorphic trapdoor functions into a primitive we call puncturable homomorphic trapdoor functions (PHTDFs). This primitive abstracts out most of the properties required in many different lattice-based cryptographic constructions. We then show how to combine a PHTDF along with a function satisfying certain properties (to be evaluated homomorphically) to give an eu-scma signature scheme. ∗School of Computer Science, College of Computing, Georgia Institute of Technology. Email: [email protected]
منابع مشابه
Design of New Linearly Homomorphic Signatures on Lattice
This paper introduces two designs to enhance the Boneh and Freemans linearly homomorphic signature over binary fields, to overcome the limitations to implement homomorphic signatures to the real world scenario due to the heavy calculation and under multiple signers setting for a message. Based on our concurrent work on classification on lattice-based trapdoor functions in SCIS 2017, we modify s...
متن کاملA Classification of Lattice-based Trapdoor Functions
A trapdoor function is a one-way function with trapdoor, which is indispensable for getting a preimage of the function. In lattice-based cryptography, trapdoor function plays an important role in constructing the secure cryptographic schemes like identity-based encryption, homomorphic encryption, or homomorphic signature. There are three categories of trapdoor functions as standard trapdoor, lo...
متن کاملAlgebraic (Trapdoor) One-Way Functions and Their Applications
In this paper we introduce the notion of Algebraic (Trapdoor) One Way Functions, which, roughly speaking, captures and formalizes many of the properties of number-theoretic one-way functions. Informally, a (trapdoor) one way function F : X → Y is said to be algebraic if X and Y are (finite) abelian cyclic groups, the function is homomorphic i.e. F (x) · F (y) = F (x · y), and is ringhomomorphic...
متن کاملLossy Trapdoor Functions from Smooth Homomorphic Hash Proof Systems
In STOC ’08, Peikert and Waters introduced a powerful new primitive called Lossy Trapdoor Functions (LTDFs). Since their introduction, lossy trapdoor functions have found many uses in cryptography. In the work of Peikert and Waters, lossy trapdoor functions were used to give an efficient construction of a chosen-ciphertext secure (IND-CCA2) cryptosystem. Lossy trapdoor functions were then shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014